
Open, extensible object models

Ian Piumarta

Viewpoints Research Institute
9242 Beverly Blvd, Suite 300

Beverly Hills, CA 90210, USA

ian@vpri.org

Alessandro Warth

UCLA Computer Science Department
3440 Boelter Hall

Los Angeles, CA 90095, USA

awarth@cs.ucla.edu

Abstract
Programming languages often hide their implementation at
a level of abstraction that is inaccessible to programmers.
Decisions and tradeoffs made by the language designer at
this level (single vs. multiple inheritance, mixins vs. Traits,
dynamic dispatch vs. static case analysis, etc.) cannot be re-
paired easily by the programmer when they prove inconve-
nient or inadequate. The artificial distinction between im-
plementation language and end-user language can be elim-
inated by implementing the language using only end-user
objects and messages, making the implementation accessi-
ble for arbitrary modification by programmers. We show that
three object types and five methods are sufficient to boot-
strap an extensible object model and messaging semantics
that are described entirely in terms of those same objects and
messages. Raising the implementation to the programmers’
level lets them design and control their own implementation
mechanisms in which to express concise solutions and frees
the original language designer from ever having to say “I’m
sorry”.

1. Introduction
Most programming languages and systems make a clear dis-
tinction between theimplementation level in which the sys-
tem is built and the‘end-user’ level in which programs are
subsequently written. The abstractions and semantics pro-
vided by these programming systems are effectively im-
mutable. Metaobject Protocols (MOPs) [5] are designed to
give back some power to programmers, letting them extend
the system with new abstractions and semantics. We are in-
terested in a different approach to solving the same problem
where we eliminate the distinction between the implementa-
tion and user levels of the programming system.

Copyright c© 2007 Ian Piumarta
All Rights Reserved.
Permission to make digital or hard copies of all or part of this work is granted provided
that copies bear this notice and the full citation on the firstpage.

As an example of the problem we are trying to solve,
consider the implementation of a Lisp-like language with
several atomic object types. The implementer must choose
a representation for these objects in some (typically lower-
level) implementation language. The choice of representa-
tion can have a profoundly limiting effect on the ability
of both the implementer and end-user to extend the lan-
guage with new types, primitive functionality and semantics
at some later time. Our Lisp-like end-user language might
have C as its implementation language and use adiscrimi-
nated union to store atomic objects and ‘cons’ cells:

enum ObjectTag { Number, String, Symbol, Cons };

struct Object {
enum ObjectTag tag;

union {
struct Number number;

struct String string;

struct Symbol symbol;

struct Cons cons;

} payload;

};

With this representation, each primitive in the end user lan-
guage that manipulates data would use conditional (if or
switch) statements to select appropriate behaviour accord-
ing to thetag field.

This simple object model has already made significant
design decisions and rendered them immutable:

• All objects must start with an integertag field.

• The internal layout of the four intrinsic types cannot be
modified at runtime.

The consequences of these decisions include:

• New payloads cannot be added by end user code, espe-
cially if they require more storage than the intrinsic types.

• New tags cannot be added unless all primitives are explic-
itly designed to work in the presence of arbitrary tags, or
the user is in a position to understand, modify and then
recompile every part of the base language implementa-
tion that might be concerned with object tags.

We could start to address these problems by creating a more
general object model for our structured data, for example by

adding asize field to allow for arbitrary payloads. Unfor-
tunately each such changeadds complexity to the language
runtime and imposesmore ‘meta-structure’ in the objects,
ultimately making themless amenable to unanticipated deep
modifications in the future.

These problems are even more severe when we consider
object-oriented languages. The object model for a simple
prototype-based language might specify ‘method dictionary’
and ‘parent’ slots in every object. The runtime would look
up a message name in the receiver’smethodDictionary,
trying again in theparent object’s method dictionary if no
match is found, continuing until finding a match or reaching
the end of the parent chain. Adding multiple delegation to
this language would be difficult because the runtime assumes
that theparent field contains a single object and not, for
example, a list of parent objects to try in turn.

The trouble is that some of the semantics of the above ex-
ample (single delegation between instances) are reified ea-
gerly in the execution mechanisms of the language. This in
turn eagerly imposes supporting meta-structure (instances
chained through aparent slot) within the objects. Since
the execution mechanisms are expressed in an implementa-
tion language at a lower level of abstraction than that of the
end user language, neither the mechanisms nor their effects
on object structure can be modified by end users. Moreover,
adapting the implementation machinery for reuse in support-
ing a different end-user language is more difficult when the
required changes are pervasive and expressed in a low-level
implementation language. In this paper we present an object
model intended to eliminates most of these problems:

• We show how an object-based model of data can help al-
leviate some of the problems of extensibility in program-
ming language implementation (Section 2).

• We define a simple, extensible object model that imposes
no structure on end-user objects (Section 3).

• The end-user object model provides message-passing se-
mantics implemented using its own objects and mes-
saging mechanism, making the semantics of messaging
modifiable or even replaceable from within the end-user
language. We show that three kinds of object and five
small methods are sufficient to achieve this (Section 3.1).

• The flexibility gained by exposing the object model’s
semantics is illustrated by showing that it can be extended
easily to support language features including multiple
inheritance and mixed-mode execution [10] (Sections 2.2
and 3).

• We validate the use of this approach for production sys-
tems by showing that: it has low space overhead (Sec-
tion 5); its performance can be competitive with, and
in some cases even better than, equivalent ‘static’ im-
plementation techniques (Section 5.3); existing object
models can be easily implemented on top of our model

(Section 5.1); advanced compositional techniques such
as Traits [11] can be accommodated (Section 5.2).

2. Our object model by example
Our model describes one thing: how an object responds to
a message. Each object is associated with avtable object.
When a message is sent to an objectO, its vtableV is
asked to find the appropriate method to run. This is done
by sending the message ‘lookup’ to V , with the message
name as argument. The semantics of sending a message to
O are therefore determined entirely byV ’s response to the
‘lookup’ message. By overriding (or redefining) ‘lookup’
we can change the semantics of message sending for some
(or all) objects.

The vtable object doesn’t have to be a table. It can de-
termine the method to run for a given message send in any
way it wants. Often, though, vtables are simply dictionaries
mapping message names onto method implementations.

This section introduces our our object model by using it
to solve two of the problems mentioned in the introduction:
adding a new atomic object type to a Lisp-like language
and converting single delegation to multiple delegation in
a message-passing language.

2.1 Adding data types to a language

For our Lisp-like language we might have alength primi-
tive that tells us how many elements are present in a string or
list. Using thetag field in theObject structure to discrimi-
nate the type of payload,length might look like this:

int length(struct Object *object)

{
switch (object->tag)

{
case Number: error("numbers have no length");

case String: return object->payload.string.length;

case Symbol: error("symbols have no length");

case Cons: return object->payload.cons.cdr

? 1 + length(object->payload.cons.cdr)

: 1;

default: error("illegal tag");

}
}

Let’s add a vector type to this language. We have to
extend the aboveswitch statement with a newcase to take
into account our new data type and itstag value:

case Vector: return object->payload.vector.length;

This isn’t too bad if we are the only user of the language and
we have access to the source code of the implementation.
However, the situation is much worse if we want to share
the new type with other users of the language, possibly as a
third-party extension; any primitive that is not modified with
an additionalcase to handle vectors will cause a run-time
error.

It would be better to store the relevantcase implemen-
tation from each primitive function in the data type itself.
Using our object model the new data type is added to the

struct vtable *Vector vt = 0;

int Vector length(struct Vector *vector) {
return vector->length;

}

void initialise(void) {
...

Vector vt = send(vtable, s allocate,

sizeof(struct vtable));

send(Vector vt, s addMethod, s length, Vector length);

...

}

int length(struct object *object) {
return send(object, s length);

}

Figure 1. Creating a new type and associating functional-
ity with it. The vtableVector vt describes the behaviour
of our new type. Invoking the methods addMethod in it
makes an association between the selectors length and
the method implementationVector length. Our length
primitive can now simply invoke the methods length in
any object and expect it to respond appropriately regard-
less of the number of data types supported by—or added
to—the language. (The variables prefixed withs are sym-
bols: interned, unique strings suitable for identifying method
names.)

language by creating a new vtable (object behaviour) and
then installing its primitives as methods in the vtable. Fig-
ure 1 shows what this would look like in our object model,
again using C as the implementation language.

This is more than advocating an object-oriented style
of programming language construction. Consider the same
Lisp-like language implemented in C++. Even if thelength
primitive was made a virtual function of each supported data
type, we would have to recompile every file after adding
Vector since the layout of C++ vtables is computed at
compile time; adding a new virtual method would invalidate
all previous assumptions about the vtable layout.

Perhaps more compelling is an example involving an
object-oriented language that uses our object model and
that can modify the direct semantics of its own messaging
mechanism.

2.2 Adding multiple inheritance to a prototype-based
language

We have created a high-level, prototype-based programming
language with single delegation that uses our object model
directly for its end user objects.1 We will use this language
for several examples. Its syntax is very close to that of
Smalltalk [4] with a few small differences (described in
Appendix A).

1 This language is written entirely in itself and can be downloaded, along
with many examples including those presented in this paper,from http:

//piumarta.com/oopsla07

Everything in our object model is an object, including the
vtables that describe the behaviour of objects. Interacting
with vtables is just a matter of invoking methods in them.
One such method is calledlookup; it takes a method name
as an argument and returns a corresponding method imple-
mentation. By overriding (or redefining) this method we can
change the semantics of message sending for some (or all)
objects.

Our prototype-based language provides the programmer
with single inheritance; a givenfamily of objectsinherits be-
haviour from a parent family (with all families eventually
inheriting behaviour fromObject). Figure 2 shows how the
programmer can directly add multiple inheritance to this lan-
guage, without loss of performance.2 With these additions to
the language, and given three prototype familiesC1, C2 and
C3

C1 : Object ()

C1 m [’this is m’ putln]

C2 : Object()

C2 n [’this is n’ putln]

C3 : C1 () "C3 inherits from C1"

the programmer can now dynamically addC2 as a parent of
C3

C3 vtable addParent: C2 vtable

so that objects in its family can execute methods inherited
from bothC1 andC2:

C3 new

m; "inherited from C1"

n "inherited from C2"

A serious implementation would of course have to take
state and behavioural conflicts into account, although this
could be as simple as allowing only one parent to be stateful
and disallowing duplicated message names. (Our implemen-
tation of Traits [11] in Section 5.2 illustrates this.)

3. Open, extensible object models
An object typically describes bothstate andbehaviour that
acts on (or is influenced by) that state. We might account
for both state and behaviour in our object model, but it
would be simpler to model just one of them and then use
it to provide the other indirectly. We choose to model (and
expose) behaviour as a set ofmethods that are invoked in
an object by name; access to state, if appropriate, is then
provided through ‘accessor’ methods.3

Figure 3 illustrates this simple model: an object is some
opaque quantity in which a method can be invoked by name;

2 The message sending mechanism uses amethod cache to memoize the
result of invokinglookup in a givenvtable for a givenmessageName.
The overhead of iterating through multiple parents is incurred only when
the method cache misses, which is rarely [2].
3 The discussion of related work (Section 6) mentions Self, a system that
made the opposite choice of modeling behaviour as a special kind of state.

ParentList : List ()

vtable addParent: aVtable

[

parent isNil

ifTrue: [parent := aVtable]

ifFalse:

[parent isParentList

ifTrue: [parent add: aVtable]

ifFalse: [parent := ParentList new

add: parent;

add: aVtable;

yourself]]

]

ParentList lookup: messageName

[

| method |
self do: [:aVtable |

(method := aVtable lookup: messageName) notNil

ifTrue: [↑method]].
↑nil

]

Figure 2. Adding multiple inheritance to a prototype-based
language. We will store multiple parents inParentList
objects; these extend (inherit behaviour from)List with-
out adding any additional state. We tellvtable how to
addParent: by converting a single parentvtable into
a ParentList if necessary, thenadding the new parent
vtable to the list. Next we definelookup: for ParentList
to search for themessageName in each parent consecutively.
(The lookup: method already installed invtable can be
left in place; it performs a depth-first search up the inheri-
tance chain by invokinglookup: in its parent slot, which
can now be either avtable or aParentList.)

we call the set of methods associated with a given object its
behaviour. Since we wish to avoid imposing structure on end
user objects, the description of behaviour is stored separately
from the object in a manner similar to most object-oriented
languages; in particular,parent slots and method tables
are not stored in objects. An object is therefore atuple of
behaviour and state. Since the behaviour is decoupled from
the internal state of the object it can be replaced and/or
shared as desired, or even associated implicitly with the
object.4

Figure 4 shows the layout of our objects in memory. An
ordinary object pointer (oop) points to the first byte of the
object’s internal state (if any). The object’s behaviour isde-
scribed by avirtual table (vtable). A pointer to the vtable is
placed immediately before the object’s state, at offset -1 rel-
ative to the pointer. This is done to preserve pointer identity
for objects that encapsulate a foreign structure, facilitating
communication with the operating system and libraries. It

4 In our prototype language, tagged (odd) pointers and the null pointer are
implicitly associated with vtables for the behaviour of small integers and
nil, respectively.

M ?

M
?

B

?’ ?’’

Figure 3. Minimal object model. An object is some opaque
state? on which a methodM can be invoked by name.
To implement this model we need a mapping from method
names to method implementations. So, to invoke a method
M in the object? we find the corresponding method imple-
mentation in a behaviour descriptionB. An object is there-
fore a tuple of behaviourB and state?. Since behaviour is
separate from the object it describes, it is possible to share
any given behaviourB between several distinct objects?,
?’, ?’’, . . .

object’s vtableobject
pointer

?
increasing

memory
addresses

Figure 4. Implementation of minimal object. An object
pointer (oop) points to the start of the object’s internal state
(if any). The object’s behaviour is described by avirtual ta-
ble (vtable). A pointer to the vtable is placed one word before
the object’s state.

vtable’s vtablevtable
pointer

native codeselector

vtable for vtables

Figure 5. Internals of vtables. A vtable maps a message
name (selector) onto the address of the native code that im-
plements the corresponding method. The mapping is de-
termined by the vtable’s response to thelookup message,
which is bound to an implementation by the ‘vtable for vta-
bles’.

also allows compiled methods, identified by the address of
their first instruction, to be full-fledged objects.

A vtable is an object too, as shown in Figure 5, and
has a reference to the ‘vtable for vtables’ before its internal
state. This ‘vtable for vtables’ is its own vtable, as shown
in Figure 6. It provides a default implementation of the
lookup method (for all vtables) that maps message names
onto method implementations. The state within a vtable sup-
ports this mapping. Thelookup method therefore dictates
the internal structure of all vtables, but there is nothing spe-

S -> I
lookup: -> <impl>

object’s vtable
vtable’s vtable

vtable’s vtable

object
pointer

? ?

object’s vtable
object

vtable’s vtable

indirectly determines internal structure

Figure 6. Everything is an object. Every object has a vtable
that describes its behaviour. A method is looked up in a
vtable by invoking itslookup method. Hence there is a
‘vtable vtable’ that provides an implementation oflookup

for all vtables in the system, including for itself. The im-
plementation of thislookup method is the only thing in the
object model that imposes internal structure on vtables.

type method

object

symbol intern

vtable addMethod
vtable lookup

vtable allocate
vtable delegated

Table 1. Essential objects and methods. Forvtables,
addMethod creates an association from a message name to
a method implementation,lookup queries the associations
to find an implementation corresponding to a message name,
delegated creates a newvtable that will delegate unhan-
dled messages to the receiver, andallocate creates a new
object within thevtable’s family (by copying the receiver
into the new object’svtable slot). We includesymbol’s
internmethod in this list since the end user must have some
way to (re)construct the name of a method. The vtables for
vtable andsymbol delegate to the vtable forobject, to
ease the creation of singly-rooted hierarchies in which these
types are reused directly as end-user object types.

cial about the initial ‘vtable vtable’ nor the structure of vta-
bles; a new ‘vtable vtable’ can be created at any time to pro-
vide a newlookup method that implements a family of vta-
bles with arbitrarily different semantics and internal struc-
ture.5

3.1 Essential objects and methods

Table 1 lists the three essential object types and the five
essential methods that they implement. These methods are
described below, with implementations shown in pseudo-

5 The methodaddMethod, described below, also depends on the internal
structure of vtables and would be overridden in parallel with thelookup
method when changing their structure.

let SymbolList = EmptyList

function symbol intern(self, string) =
foreach symbol in SymbolList
if string = symbol.string
return symbol

let symbol = new symbol(string)
append(SymbolList, symbol)
return symbol

Figure 7. Method symbol.intern. Symbols are unique
strings. A lazy implementer would co-opt avtable into use
as aSymbolList holding previously-internedsymbols.

function vtable addMethod(self, symbol, method) =
foreach i in 1 .. self.size
if self.keys[i] = symbol
self.values[i] := method
return

append(self.keys, symbol)
append(self.values, method)

Figure 8. Methodvtable.addMethod. If the method name
symbol is already present, replace the method associated
with it. Otherwise add a new association between the name
and the method.

code intended to make their operation as clear as possible.
(Appendix B presents a complete implementation of these
methods and types in GNU C.)

Before we can construct an object system we need a
way to add methods tovtables, which requires a means
to construct unique method names. Figure 7 shows a simple
algorithm for creating ‘interned’ (unique) strings that are
ideal for use as method names.

To add methods to avtable we sendaddMethod to it,
passing a message name (symbol) and the address of native
code implementing the method. The algorithm is shown in
Figure 8.

Sending a message to an object begins by mapping a par-
ticular combination of object and message into an appropri-
ate method implementation. Figure 9 shows the algorithm
for vtable’s lookup method that performs this mapping.

Invoking theallocate method in avtable allocates a
new object. The object is made a member of the vtable’s
family, as shown in Figure 10.

Finally, the creation of new behaviours is provided by
vtable’s delegated method. It creates a new (empty)
vtable whose parent is the vtable in whichdelegated
was invoked. The algorithm is shown in Figure 11.

function vtable lookup(self, symbol) =
foreach i in 1 .. self.size
if self.keys[i] = symbol
return self.values[i]

if self.parent 6=nil
return self.parent.lookup(symbol)

return nil

Figure 9. Methodvtable.lookup. The default implementa-
tion searches the receiver’s keys for the message name. If no
match is found the search continues in the parent, if present,
otherwise the search fails by answeringnil.

function vtable allocate(self, size) =
let object = allocateMemory(PointerSize + size)
object := object + PointerSize
object[-1] := self /* vtable */
return object

Figure 10. Methodvtable.allocate. A new object is created
and itsvtable (stored in the word preceding the object) is
set to thevtable in which theallocate method was in-
voked, making the object a member of thatvtable’s family.
The size argument specifies the size of the object’s state.
Computation of the correct value forsize is dependent on
the programming language implementation in which the ob-
ject model is being used.

function vtable delegated(self) =
let child =
if self 6=nil
vtable allocate(self[-1], VtableSize)

else

vtable allocate(nil, VtableSize)
child.parent := self

child.keys := EmptyList
child.value := EmptyList
return child

Figure 11. Method vtable.delegated. A new vtable is
allocated and itsparent set to thevtable in which the
delegated method is being invoked. Theseparent fields
link thevtables together into a single delegation chain.

3.2 Message sending

To send a messageM to an objectO we look upM in the
vtable ofO to yield a method implementation that is then
called. The call passes the objectO (which becomesself
in the called method) and any remaining message arguments.
Thesend algorithm is therefore:

function send(object, messageName, args...) =
let method = bind(object, messageName)
return method(object, args...)

The functionbind is responsible for looking up the method
name in the vtable ofobject and just invokeslookup in the
object’s vtable, passingmessageName as the argument:

function bind(object, messageName) =
let vt = object[-1]
let method =
if messageName = lookup

and object = VtableVT
vtable lookup(vt, lookup)

else

send(vt, lookup, messageName)
return method

Note that the recursion implied bysend callingbind which
in turn callssend (to invoke thelookup method in the ob-
ject’s vtable) is broken by ‘short-circuiting’ the send (call-
ing the methodvtable lookup directly) when the method
name islookup and the object in which it is being bound is
the ‘vtable vtable’.

3.3 Bootstrapping the object universe

The structure associated with the three essential types has
to be created and their vtables populated before the object
model will behave as we have described. Figure 12 shows
one possible order in which this initialisation can take place:

1. The vtables forvtable, object andsymbol are created
and initialised explicitly.

2. The symbol lookup is interned and the method
vtable.lookup installed. At this point thesend and
bind functions described in the previous section (i.e.,
message sending) will work.

3. The symboladdMethod is interned and the method
vtable.addMethod installed. At this point methods can
be installed in a vtable by sendingaddMethod to the
vtable.

4. The symbolallocate is interned and the method
vtable.allocate installed. At this point new mem-
bers of an object family can be created by sending their
vtable the messageallocate, and this is done to create
the prototypesymbol object.

5. The symbol intern is interned and the method
symbol.intern installed. At this point new symbols can

function initialise() =
/* 1. create and initialise vtables */
VtableVT := vtable delegated(nil)
VtableVT[-1] := VtableVT

ObjectVT := vtable delegated(nil)
ObjectVT[-1] := VtableVT
VtableVT.parent := ObjectVT

SymbolVT := vtable delegated(ObjectVT)

/* 2. install vtable.lookup */
lookup := symbol intern(nil, ”lookup”)
vtable addMethod(VtableVT, lookup, vtable lookup)

/* 3. install vtable.addMethod */
addMethod := symbol intern(nil, ”addMethod”)
vtable addMethod(VtableVT, addMethod,

vtable addMethod)

/* 4. install vtable.allocate */
allocate := symbol intern(nil, ”allocate”)
VtableVT.addMethod(allocate, vtable allocate)
symbol := SymbolVT.allocate(SymbolSize)

/* 5. install symbol.intern */
intern := symbol intern(nil, ”intern”)
SymbolVT.addMethod(intern, symbol intern)

/* 6. install vtable.delegated */
delegated := symbol.intern(”delegated”)
VtableVT.addMethod(delegated, vtable delegated)

Figure 12. Bootstrapping the object model. Method imple-
mentations are called as functions and vtable slots initialised
explicitly to create the vtables for the three objects types.
The methodssymbol intern andvtable addMethod are
called explicitly to populate the vtables. By the time the last
two lines are reached, we have enough of the object model
in place that we can send messages to intern the symbol
delegated and install it in the vtable for vtables.

be interned by sendingintern to the prototypesymbol
object.

6. Finally, the symboldelegated is interned (by sending
intern tosymbol) and the methodvtable.delegated
installed (by sendingaddMethod to the vtable for vta-
bles). At this point the object system behaves exactly as
described in this paper.

The initialised ‘object universe’ is shown in Figure 13.

3.4 Implementation language bindings

To deploy the object model as part of a programming lan-
guage implementation, we need three things:

• implementation language structure definitions for the lay-
outs ofobject, symbol andvtable (implied by the de-

#define send(OBJ, MSG, ARGS...) ({ \
struct object *o = (struct object *)(OBJ); \
struct vtable *thisVT = o-> vt[-1]; \

static struct vtable *prevVT = 0; \
static method t method = 0; \
(thisVT == prevVT \

? method \
: (prevVT = thisVT, \

method = bind(o, (MSG))))(o, ##ARGS); \
})

Figure 14. Optimisingsendwith an inline cache. Thesend
macro memoizes the previous vtable and associated closure
returned frombind. bind is only called (and the memoized
closure and vtable values updated) if the invocation is to an
object whose vtable is not the same as the previous object’s
vtable at the same invocation site; otherwise the previously
bound closure is reused immediately. This is safe provided
the method name is a constant at any given invocation site.

fault implementation of thelookup method installed in
the ‘vtable vtable’);

• implementations of the five essential methods in the im-
plementation language; and

• an implementation language method invocation mecha-
nism, to call a method implementation (returned from
lookup) passing the receiver object and message argu-
ments.

Appendix B presents a complete implementation in the GNU
C language. The next section discusses two optimisations
appearing in this implementation that significantly improve
the performance of message sending. It should be straight-
forward to adapt them to other programming languages.

3.5 Optimising performance

The performance of the GNU C versions ofsend() and
bind() are improved by two forms of caching.

Figure 14 shows a version ofsend that is implemented as
a macro. This allows each send site to remember the previous
destination method returned bybind in an inline cache. As
long as the vtable of the next receiver does not change, the
previous destination method can be invoked directly without
callingbind again (assuming the message name at the send
site is constant).

Figure 15 shows a version ofbind that has been opti-
mised with a globalmethod cache. Before invokinglookup
the optimisedbind looks for the vtable and method name in
a cache of previously bound methods. If it finds a match, it
returns the cached closure; if not, it invokeslookup and fills
the appropriate cache line.

These two optimisations are independent and can be used
separately or together. Note that a realistic language imple-
mentation would need a way to invalidate these caches each
time a change is made to vtable contents or inheritance rela-

parent string "lookup"

string "addMethod"

string "allocate"

string "delegated"

string "intern"

ObjectVT

keys
values

parent

SymbolVT

keys
values

symbol_intern()

parent

VtableVT

keys
values

vtable_lookup()
vtable_addMethod()
vtable_allocate()
vtable_delegate()

nilstring

parent ref
vtable ref
slot ref
list

method_impl()

Legend

nil

symbol

Figure 13. The object model universe. The larger objects are the vtables for the three essential types (object, symbol and
vtable). Just aboveSymbolVT is the prototypesymbol object, and to the right of it are the symbols that provide message
names for the five essential methods whose implementations are just belowVtableVT on the right. The symbolintern is
bound to the methodstring intern in the SymbolVT and the remaining methods are bound to their message names in
VtableVT. BothSymbolVT andVtableVT delegate toObjectVT.

struct entry {
struct vtable *vtable;

struct object *message;

method t method;

} MethodCache[8192];

struct method t *bind(struct object *obj,

struct object *msg)

{
method t m;

struct vtable *vt = obj-> vt[-1];

unsigned long offset = hash(vt, msg) & 8191;

struct entry *line = MethodCache + offset;

if (line->vtable == vt && line->message == msg)

return line->method;

m = ((msg == s lookup) && (obj == vtable vt))

? vtable lookup(vt, msg)

: send(vt, s lookup, msg);

line->vtable = vt;

line->message = msg;

line->method = m;

return m;

}

Figure 15. Optimisingbind with a global method cache.
The MethodCache stores vtables, message names, and the
associated method implementations. Tobind a message
name within a vtable, a hash is computed from the vtable and
name modulo the size of the method cache to create a cache
line offset. If the vtable and name stored in the cache at that
offset correspond to the vtable and name being bound, the
stored method is returned immediately. Otherwiselookup

is invoked in the vtable to bind the method name, and cache
updated accordingly.

VtableVT

vtable

ClosureVT

method

data

native code

anything

selector

Figure 16. Revised internals of vtables. A vtable maps mes-
sage names onto closures, containing the address of the na-
tive code to be executed and some arbitrary data. Since clo-
sures are objects, they too have a pointer to a vtable describ-
ing their behaviour.

tionships. Mechanisms for doing this are simple but beyond
the scope of this paper.

4. Extensions that improve generality
Section 3 described the simplest possible arrangement of our
object model, in which each message name in a vtable is
associated with the address of the native code of a corre-
sponding method implementation. We found that the useful-
ness and generality of the object model were significantly
improved by introducing an additional level of indirection,
so that a message name is associated with aclosure. Each
closure contains two items: the address of the compiled
code implementing the method and some (arbitrary) data,
as shown in Figure 16. Thebind function is modified to
return a closure as shown in Figure 17;send then invokes
the method stored in the closure and passes the closure itself
as an argument to the method (in addition to the message
receiver and arguments). Method implementations are mod-
ified correspondingly, to accept the additional argument.

We believe the slight increase in complexity is more than
justified by the generality that is gained. For example:

function vtable addMethod(myClosure, self,
aSymbol, aMethod) =

foreach i in 1 .. self.size
if self.keys[i] = aSymbol
self.values[i] := aMethod
return

self.keys.append(aSymbol)
self.values.append(new closure(aMethod, nil))

function send(object, messageName, args...) =
let closure = bind(object, messageName)
return closure.method(closure, object, args...)

function bind(object, messageName) =
let vt = object[-1]
let closure =
if messageName = lookup

and object = VtableVT
vtable lookup(nil, vt, lookup)

else

send(vt, lookup, messageName)
return closure

Figure 17. Revised methods and functions. The method
addMethod and the message sending functionsbind and
send are modified to store and retrieve closures instead of
methods. Note thataddMethod, like all method implemen-
tations, now accepts an additional argument (the closure in
which it was found bylookup).

VtableVTvtable
pointer ClosureVT

method

data
getter(closure, self)
{
 ^closure.data
}

slotName

ClosureVT

method

data

slotName:

setter(closure, self, value)
{
 ^closure.data.data := value
}

FunctionVT

FunctionVT

Figure 18. Self-like slots. An assignable slot is imple-
mented as a pair of methods: a ‘getter’ and a ‘setter’. The
value of the slot is stored as thedata in the closure of its
getter method. Thedata of the setter method’s closure con-
tains a reference to the getter’s closure, allowing the setter
to assign into the getter’sdata. A single implementation of
getter and setter can be shared by all closures associated with
assignable slots.

• Figure 18 shows how closures can be used as assignable
slots, creating an end-user object model similar to that of
traditional prototype-based languages.

• Figure 19 shows how closures are used to support mixed-
mode execution [10]. A single interpreter method is
shared between many closures whosedata fields con-

VtableVT
vtable ClosureVT

method

data

interp(closure, self)
{
 char *bytecodes = closure.data;
 ...
}

byte-compiled method 1

selector

ClosureVT

method

data

byte-compiled method 2selector

FunctionVT

Figure 19. Mixed-mode execution. An interpreter (for byte-
codes or other structures) can be shared by any number of
method closures. The structure to be interpreted is stored
in the data part of the closure. As described in the text,
the closure is passed as an argument to the method im-
plementation (in this case the interpreter) from where its
data is readily accessible. To the caller there is no differ-
ence between invoking a native method and invoking a byte-
compiled method; the calling convention is the same.

tain the code to be interpreted. To the caller there is no
difference between invoking a natively compiled method
and invoking an interpreted method.

Other useful extensions that we have implemented in-
clude support for ‘Lieberman-style’ prototypes [7] which
provide much stronger encapsulation than the more common
class-based inheritance. A detailed description of this exten-
sion is available online [9].

5. Evaluation
We validate our object model in two ways:

• By showing that it can be extended easily to support ob-
ject models for existing languages or significant and use-
ful features drawn from them. We do this by extending
our prototype-based language (that uses our model di-
rectly, as described in Section 2.2) first to support the
Javascript object model (Section 5.1) and then by adding
Traits (Section 5.2).

• By showing that its performance is sufficient for its use
in serious language implementations (Section 5.3).

5.1 Ease of use: Javascript objects

Javascript [3] has a simple object model based on delega-
tion [7] in which objects are dictionaries that map prop-
erty names to their values. When an object is asked for an
unknown property, it forwards the request to its prototype
(fetched from its proto property). Properties are ‘copy-
on-write’; assigning to a property of an object either updates
an existing property or creates a new property in the object.
All objects, functions and methods in Javascript are based
on this model.

Figure 20 shows one way of extending our object model
to support these semantics. Note that this implementation is
not intended to be used directly by programmers (although

vtable get [↑closure data]

get := [(vtable vtable lookup: #get) method]

Object set: prop to: val

[

| closure |

(closure := self vtable lookup: prop) notNil

ifFalse:

[closure := self vtable methodAt: prop put: get].

closure setData: val.

prop == # proto

ifTrue:

[self vtable parent: val vtable.

vtable flush].

]

Figure 20. Javascript objects. Properties are implemented
in a manner similar to that of slots in Figure 18. How-
ever, setter methods were eliminated in favour of aset:to:

method that treats the proto property specially. If
proto is assigned then theparent of the object’s vtable

is set to thevalue’s vtable, and any method caches are
flushed. (Note that the block expression assigned toget is
evaluated; the value assigned is the result of executing the
block, not an unevaluated, literal block. Appendix A ex-
plains this syntax further.)

nothing prohibits this). Rather, a compiler is expected to
translate Javascript expressions into method invocations. For
example, a Javascript field access ‘x.p’ is translated to ‘x p’
(send messagep to x, invoking its property getter). Simi-
larly, the Javascript assignment ‘x.p = y’ is translated to
‘x set: #p to: y’ (send messageset:to: tox, invoking
its property setter) with arguments#p (the property name)
andy (the new value).

5.2 Ease of use: Traits

Traits [11] are a powerful software composition mechanism.
A trait is a collection of methods without state that can
be manipulated and combined with other traits according
to an algebra of composition, aliasing and exclusion. They
are interesting because they provide the power of multiple
inheritance without the complexity.

Figure 21 shows how our prototype-based language can
be extended to support Traits. We can then easily implement
the operations of the Traits ‘algebra’, for example:

Trait + aTrait

[

↑Trait delegated

useTrait: self;

useTrait: aTrait

]

This creates a new empty trait and adds both the receiver and
the argument to it, composing their behaviours. (Method ex-
clusion and method aliasing are left as an exercise; they take
no more than a few minutes each. Once all three operations

Trait : Object ()

Object useTrait: aTrait [aTrait addTo: self]

Trait addTo: anObject

[

self vtable keysAndValuesDo: [:selector :closure |

| newClosure |

newClosure := anObject vtable

traitMethodAt: selector

put: closure method.

newClosure setData: closure data]

]

vtable traitMethodAt: aSelector put: aMethod

[

(self includesKey: aSelector)

ifTrue: [↑self errorConflict: aSelector]

↑self methodAt: aSelector put: aMethod

]

Figure 21. Support for traits.Trait.addTo: adds the
methods of the receiver to the vtable of the argument.
vtable.traitMethodAt:put: adds a method implemen-
tation with a given name to the receiver, and signals an error
if the method name is already defined.

are available, you will have conforming traits implementa-
tion!)

With the above traits implementation in place, we can
write code such as:

T1 : Trait ()

T1 m [’this is m’ putln]

T2 : Trait ()

T2 n [’this is n’ putln]

C : Object () [C useTrait: T1 + T2]

C o [self m; n]

(Note that in the above what looks like a literal block after
the declaration ofC is actually an imperative; the program
is executed from top to bottom, sendinguseTrait: to C

before continuing with the installation of methodo in C.
Appendix A explains this further.)

5.3 Benchmarks

We measured the size and speed of a sample implementation
written in GNU C (see Appendix B), faithfully following
the algorithms and structure presented in this paper. All
measurements were made on a 2.16 GHz Intel Core Duo.

The sample implementation is approximately 140 lines of
code, containing:

• the three essential object types;

• one constructor function, forsymbols;

• the five essential methods;

• macros forsend andbind, as presented in Section 3.2,
with optional inline and global method caches; and

• an initialisation function that creates the initial objects
and populates their vtables to create the object system as
shown in Figure 13.

The object code size for all essential objects and their meth-
ods, with unoptimisedsend andbind, is 1,453 bytes. With
the inline and global caches enabled, the code size grows
to 1,822 bytes.6 This should not be an issue for any but the
most severely resource-constrained environments.

Next we investigate the overhead of dynamic dispatch
through the vtables. We implemented thenfibs func-
tion (which has a very high ratio of message sends, or
function invocations, to computation) in optimised C with
statically-bound function calls and compared it with our ob-
ject model using dynamically-bound message sends and an
inline cache. The results from runningnfibs(34) (perform-
ing 18,454,929 calls or method invocations) were:

type time % of static call
static call (C) 150 ms 100.0%
dynamic send 270 ms 55.6%

While the results are polluted a little by the arithmetic com-
putation, they show that a static C function call is only
approximately twice as fast as a dynamically-bound send
through an inline cache. The actual overhead should be
lower in practice since most code will perform more compu-
tation per call/send thannfibs.

Lastly, we implemented the example presented in Sec-
tion 2 of this paper: data structures suitable for a Lisp-like
language. We implemented a ‘traditional’length primitive
using aswitch on an integertag to select the appropri-
ate implementation amongst a set of possiblecase labels.
This was compared with an implementation in which data
was stored using our object model and thelength primitive
usedsend to invoke amethod in the objects themselves.7

Both were run for one million iterations on forty objects, ten
each of the four types that support thelength operation.
The results, with varying degrees of object model optimisa-
tions enabled, were:

implementation time % of switch
switch-based 503 ms 100.0%
dynamic object-based 722 ms 69.7%

+ global cache 557 ms 90.3%
+ inline cache 243 ms 207.0%

This shows that an extensible, object-based implementation
can perform at better than half the speed of a typical C im-
plementation for a simple language primitive. With a global
method cache (constant overhead, no matter how many
method invocation sites exist) the performance is within
10% of optimised C. When the inline cache was enabled
the performance was better than twice that of optimised C.

6 Darwin 8.8.1, Intel Core Duo, gcc-4.0.1 (Apple build 5367).
7 Our reference implementation, including thelength benchmarks, can be
downloaded from:http://piumarta.com/oopsla07

In a practical language implementation the above perfor-
mance gaps would be decrease in all cases as the amount of
useful work per primitive increases. (It is hard to conceive
of a simpler primitive thanlength.)

5.4 Limitations

Our object model relies on a method cache [2] for perfor-
mance. It is necessary to flush the cache after certain pro-
gramming changes such as modifying a vtable (adding or
removing a mapping, or storing into theparent slot). This
is easy to do for both inline and global method caches, but is
neither described in this paper nor counted in our evaluation
of the sample implementation.

We do not count constructors in the number of methods in
the object implementation. (There is norequirement for the
constructors to be installed as methods although in practice
it is convenient to do so.)

We also do not count the vtable pointer as part of the
end-user object structure, since it appears before the nominal
start of the object.

Lastly, the implementation ofbind andsend cannot be
exposed as easily as the method lookup mechanism. This
can be addressed by exposing the semantics of functions in
the same way that the object model exposes the semantics of
messaging (see Section 7). This permits almost unlimited
flexibility to implement mechanisms such as multimethods.

6. Related work
TinyObjects [6] also lets programmers remove limitations
from the system instead of ‘programming around’ them. It
provides a Metaobject Protocol (MOP) [5], at the end-user
level of abstraction, that reflects on the implementation level
and allows programmers to customise the object model to fit
the needs of their applications. We address the same problem
by implementing the object model and the equivalent of a
very small MOP within a single level of abstraction. This
way the programmer can directly manipulate the objects and
methods that implement the semantics of their object model.

Smalltalk-80 [4] has methods (in classesBehaviour,
Class and Metaclass) that provide what is essentially an
incomplete MOP. While these can be used by programs (in-
cluding the Smalltalk programming environment itself) to
create new subclasses and modify method dictionaries, they
cannot be used to modify the semantics of message sending
itself nor the internal layout of objects.

McCarthy’s metacircular evaluator for LISP [8] demon-
strated that it is possible for a language to be implemented
(described) in itself. Such implementations are ‘open’: they
allow programmers both to write ‘user programs’ and also to
modify or extend the semantics of the language. The circu-
lar implementation of our object model brings an equivalent
openness to the object-messaging paradigm.

Some systems, such as the Self programming language [12]
and Lieberman’s prototypes [7], present the user with sim-

pler object models than the one we describe. The cost of
this simplicity is that some of the semantics of their object
models is hidden (slot lookup in particular) and cannot be
modified by end user code. Self also requires a significantly
more complex runtime to run efficiently [1]. Our model is
much closer Self’s internal object model which usesmaps
(similar to our vtables) to describe the behaviour of entire
clone families. Very promising recent experiments with Self
aim to expose the entire implementation to the program-
mer [13].

7. Conclusions and further work
We presented a simple, extensible object model that exposes
its own semantics in terms of the objects and messages that
it implements. This circularity in the implementation re-
sults in surprising flexibility; end users have direct access
to, and control over, the implementation mechanisms of the
object model itself. Our experience with this object model
has shown that it can be extended easily to support powerful
features such as sideways composition and mixed-mode exe-
cution. While it is not necessarily a friendly model for hand-
written code, it is an attractive target for automatic transla-
tion. It could also be an attractive target for statically-typed
languages, where the compiler can guarantee runtime type
safety.

Because it imposes no structure on end user objects, our
model invites experimentation that might otherwise be dif-
ficult. For example, it allows a pointer to a compiled native
function to also be an object, to which messages can be sent;
a vtable in the word before the function prologue suffices.
We envisage going further and storing useful information
about compiled code (stack layout, signature information,
pre- and post-conditions, etc.) in the word before the func-
tion’s vtable pointer (at offset -2).

This complements our ongoing work with dynamic code
generation that brings the functional aspects of our object
model (method implementations, method invocation, and
send andbind in particular) under the control of the pro-
grammer. This work will be the subject of forthcoming pub-
lications.

Starting with the algorithms and C language bindings de-
scribed in this paper, implementing our object model in C
took no more than four hours. The essential objects and
methods total 140 lines of source code. Not only is it tiny, but
it also scales well: in a slightly different form it has been in
daily use by several people for over a year. This model pro-
vides rich Smalltalk-like class libraries, implements itsown
compiler and dynamic code generator for multiple architec-
tures, and integrates seamlessly with platform libraries and
garbage collection. With the addition of a few lines of code
it can support tagged immediate quantities, and represent the
objectnil with the NULL pointer.

References
[1] C. Chambers, D. Ungar, and E. Lee. An efficient implemen-

tation of SELF a dynamically-typed object-oriented language
based on prototypes. InOOPSLA ’89: Conference proceed-
ings on Object-oriented programming systems, languages
and applications, pages 49–70, New York, NY, USA, 1989.
ACM Press.

[2] L. P. Deutsch and A. M. Schiffman. Efficient implementation
of the Smalltalk-80 system. InPOPL ’84: Proceedings of
the 11th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, pages 297–302, New York, NY,
USA, 1984. ACM Press.

[3] ECMA. Ecmascript language specification, December 1999.
http://www.ecma.ch/ecma1/stand/ecma-262.htm.

[4] A. Goldberg and D. Robson.Smalltalk-80: the language and
its implementation. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1983.

[5] G. Kiczales, J. des Rivieres, and D. G. Bobrow.The art
of metaobject protocol. MIT Press, Cambridge, MA, USA,
1991.

[6] G. Kiczales and A. Paepcke. Open Implementations and
Metaobject Protocols.http://www2.parc.com/csl/
groups/sda/publications/papers/Kiczales-TUT95/

for-web.pdf.

[7] H. Lieberman. Using prototypical objects to implement
shared behavior in object-oriented systems. InOOPLSA ’86:
Conference proceedings on Object-oriented programming
systems, languages and applications, pages 214–223, New
York, NY, USA, 1986. ACM Press.

[8] J. McCarthy. LISP 1.5 Programmer’s Manual. The MIT
Press, 1962.

[9] I. Piumarta. Efficient Sideways Composition via ‘Lieberman’
Prototypes. VPRI Research Memo RM-2007-002-a,http:

//vpri.org/pdf/prototypes1.pdf.

[10] S. Sankar, S. Viswanadha, J. H. Solorzano, R. J. Duncan,
and D. J. Bacon. Mixed-mode execution for object-
oriented programming languages. US Patent 6854113,
issued February 8, 2005.http://www.patentstorm.us/
patents/6854113.html.

[11] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits:
Composable units of behavior. InProceedings ECOOP 2003
(European Conference on Object-Oriented Programming),
volume 2743 ofLNCS, pages 248–274. Springer Verlag, July
2003.

[12] D. Ungar and R. B. Smith. Self: The power of simplicity.
In OOPSLA ’87: Conference proceedings on Object-oriented
programming systems, languages and applications, pages
227–242, New York, NY, USA, 1987. ACM Press.

[13] D. Ungar, A. Spitz, and A. Ausch. Constructing a metacircu-
lar virtual machine in an exploratory programming environ-
ment. InOOPSLA ’05: Companion to the 20th annual ACM
SIGPLAN conference on Object-oriented programming, sys-
tems, languages, and applications, pages 11–20, New York,
NY, USA, 2005. ACM Press.

A. Prototype language syntax
The prototype-based language used for several examples in the
text has a syntax similar to that of Smalltalk-80 [4] with a few
significant differences described here.

A.1 Type declarations

New types are introduced by creating a named prototype of that
type. For example,

Derived : Base (a b)

creates a variable ‘Derived’ (in a kind of ‘global namespace’)
and assigns to it a new prototype belonging to a family of objects
that inherit behaviour and state from the family of ‘Base’ (another
prototype) and which extend that state with two new slots called
a andb. The new vtable forDerived is created automatically by
sendingdelegated to the vtable forBase; this vtable is then sent
the messageallocate to create the prototype stored inDerived.

A.2 Method definitions

The body of a method follows its defining message pattern within
square brackets. For example,

Derived frobble: bob with: bill

[

↑bob frobbleWith: bill from: self

]

installs the methodfrobble:with: in the vtable forDerived by
sending it the messageaddMethod with the message name and
method implementation as arguments.

A.3 Top-level statements

Arbitrary statements can be executed at the ‘top-level’ of the pro-
gram (anywhere a definition is allowed) by enclosing them in
square brackets. For example,

[

’running DeepThought program...’ putln.

DeepThought new multiply: 6 by: 9.

]

announces to the user that an application is about to run, then
instantiates and runs it.

A.4 Top-level definitions

Variables in the ‘global namespace’ can be bound to arbitrary val-
ues (not just to new prototypes as described above). For example,

TheAnswer := [42]

creates a ‘global’ variable namedTheAnswer and initialises it with
the value of the last expression in the block (in this case, the literal
42).

B. Sample object model implementation
/* A sample implementation in GNU C of the object model described in this paper.

* This code, and that of the benchmarks discussed in the text, can be downloaded from: http://piumarta.com/oopsla07
*/

#include <stdio.h>
#include <stdlib.h>

#include <string.h>

#define ICACHE 1 /* nonzero to enable point-of-send inline cache */
#define MCACHE 1 /* nonzero to enable global method cache */

struct vtable;
struct object;

struct symbol;

typedef struct object *(*method_t)(struct object *receiver, ...);

struct vtable

{
struct vtable *_vt[0];

int size;
int tally;
struct object **keys;

struct object **values;
struct vtable *parent;

};

struct object {
struct vtable *_vt[0];

};

struct symbol

{
struct vtable *_vt[0];
char *string;

};

struct vtable *vtable_vt = 0;
struct vtable *object_vt = 0;

struct vtable *symbol_vt = 0;

struct object *s_addMethod = 0;

struct object *s_allocate = 0;
struct object *s_delegated = 0;

struct object *s_lookup = 0;
struct object *s_intern = 0;

struct object *symbol = 0;

struct vtable *SymbolList = 0;

extern inline void *alloc(size_t size)
{

struct vtable **ppvt= (struct vtable **)calloc(1, sizeof(struct vtable *) + size);

return (void *)(ppvt + 1);
}

struct object *symbol_new(char *string)
{

struct symbol *symbol = (struct symbol *)alloc(sizeof(struct symbol));
symbol->_vt[-1] = symbol_vt;

symbol->string = strdup(string);
return (struct object *)symbol;

}

struct object *vtable_lookup(struct vtable *self, struct object *key);

#if ICACHE

define send(RCV, MSG, ARGS...) ({ \
struct object *r = (struct object *)(RCV); \

struct vtable *thisVT = r->_vt[-1]; \
static struct vtable *prevVT = 0; \
static method_t method = 0; \

(thisVT == prevVT \
? method \

: (prevVT = thisVT, \
method = _bind(r, (MSG))))(r, ##ARGS); \

})

#else
define send(RCV, MSG, ARGS...) ({ \

struct object *r = (struct object *)(RCV); \

method_t method = _bind(r, (MSG)); \
method(r, ##ARGS); \

})
#endif

#if MCACHE
struct entry {

struct vtable *vtable;
struct object *selector;

method_t method;
} MethodCache[8192];
#endif

method_t _bind(struct object *rcv, struct object *msg)

{
method_t method;

struct vtable *vt = rcv->_vt[-1];
#if MCACHE

unsigned int hash = (((unsigned)vt << 2) ^ ((unsigned)msg >> 3)) & ((sizeof(MethodCache) / sizeof(struct entry)) - 1);

struct entry *line = MethodCache + hash;
if (line->vtable == vt && line->selector == msg)

return line->method;
#endif

method = ((msg == s_lookup) && (rcv == (struct object *)vtable_vt))

? (method_t)vtable_lookup(vt, msg)
: (method_t)send(vt, s_lookup, msg);

#if MCACHE
line->vtable = vt;

line->selector = msg;
line->method = method;

#endif

return method;
}

struct object *vtable_allocate(struct vtable *self, int payloadSize)
{

struct object *object = (struct object *)alloc(payloadSize);
object->_vt[-1] = self;

return object;
}

struct vtable *vtable_delegated(struct vtable *self)
{

struct vtable *child= (struct vtable *)vtable_allocate(self, sizeof(struct vtable));
child->_vt[-1] = self ? self->_vt[-1] : 0;

child->size = 2;
child->tally = 0;
child->keys = (struct object **)calloc(child->size, sizeof(struct object *));

child->values = (struct object **)calloc(child->size, sizeof(struct object *));
child->parent = self;

return child;
}

struct object *vtable_addMethod(struct vtable *self, struct object *key, struct object *method)
{

int i;
for (i = 0; i < self->tally; ++i)

if (key == self->keys[i])
return self->values[i] = (struct object *)method;

if (self->tally == self->size)

{
self->size *= 2;

self->keys = (struct object **)realloc(self->keys, sizeof(struct object *) * self->size);
self->values = (struct object **)realloc(self->values, sizeof(struct object *) * self->size);

}
self->keys [self->tally] = key;
self->values[self->tally++] = method;

return method;
}

struct object *vtable_lookup(struct vtable *self, struct object *key)
{

int i;
for (i = 0; i < self->tally; ++i)

if (key == self->keys[i])
return self->values[i];

if (self->parent)
return send(self->parent, s_lookup, key);

fprintf(stderr, "lookup failed %p %s\n", self, ((struct symbol *)key)->string);

return 0;

}

struct object *symbol_intern(struct object *self, char *string)

{
struct object *symbol;

int i;
for (i = 0; i < SymbolList->tally; ++i)
{

symbol = SymbolList->keys[i];
if (!strcmp(string, ((struct symbol *)symbol)->string))

return symbol;
}

symbol = symbol_new(string);

vtable_addMethod(SymbolList, symbol, 0);
return symbol;

}

#define trace() printf("%s %d\n", __FUNCTION__, __LINE__); fflush(stdout)

void init(void)

{
vtable_vt = vtable_delegated(0);

vtable_vt->_vt[-1] = vtable_vt;

object_vt = vtable_delegated(0);

object_vt->_vt[-1] = vtable_vt;
vtable_vt->parent = object_vt;

symbol_vt = vtable_delegated(object_vt);

SymbolList = vtable_delegated(0);

s_lookup = symbol_intern(0, "lookup");

vtable_addMethod(vtable_vt, s_lookup, (struct object *)vtable_lookup);

s_addMethod = symbol_intern(0, "addMethod");
vtable_addMethod(vtable_vt, s_addMethod, (struct object *)vtable_addMethod);

s_allocate = symbol_intern(0, "allocate");
send(vtable_vt, s_addMethod, s_allocate, vtable_allocate);

symbol = send(symbol_vt, s_allocate, sizeof(struct symbol));

s_intern = symbol_intern(0, "intern");
send(symbol_vt, s_addMethod, s_intern, symbol_intern);

s_delegated = send(symbol, s_intern, (struct object *)"delegated");
send(vtable_vt, s_addMethod, s_delegated, vtable_delegated);

}

