
Making COLAs with Pepsi and Coke∗

(a white-paper advocating widespread, unreasonable behaviour)

Ian Piumarta

piumarta@speakeasy.net

2005 - 09 - 30†

“The reasonable man adapts himself to the world: the unreasonable man
persists in trying to adapt the world to himself. Therefore all progress
depends on the unreasonable man.”

— George Bernard Shaw, Maxims for Revolutionists

∗‘Pepsi’, ‘Coke’ and ‘COLA’ are (terrible) working names, thoroughly unsuitable for public consumption.
The author welcomes suggestions for clever (and original) replacements.

†This is a work-in-progress and should not be considered final. Repetition is rampant and parts may be
incoherent, incomplete, or internally inconsistent.

Contents

1 Introduction 3

2 Conventional programming languages 4

3 Combined Object-Lambda Architectures (COLAs) 6
3.1 End-user abstractions . 6
3.2 Modularity and reuse . 8
3.3 Construction and operation . 8

4 Representation: objects and messaging 11
4.1 Object format . 11
4.2 Methods and messaging . 13
4.3 Interoperability . 14

5 Behaviour: symbolic expressions and transformations 15
5.1 Structural transformations . 16

6 Circular implementation 18
6.1 Bootstrapping . 19

7 Unconventional programming languages 22

8 Conclusion 24
8.1 Omissions . 24
8.2 Status . 24
8.3 Perspectives . 25

2

1 Introduction

A new way to construct programming languages, systems, environments and applications
(herein collectively referred to as ‘systems’) is described. The priorities are somewhat dif-
ferent from those of conventional systems, emphasising (above all else) simplicity, openness,
evolution, and pervasive user-centred implementation. The goal is that users be able to un-
derstand and modify any part of the system, and that the system be organised in a way that
encourages them to do so.

• Simplicity — the system should be simple to understand and to modify. Self-similarity

is pervasive, both globally (the system entirely describes and implements itself, within a
homogeneous object-oriented paradigm) and locally (each stage in the implementation
chain differs from those adjacent in a single aspect according to a transformation whose
interface is as simple as possible, but no simpler).

• Openness — no part of the system is hidden. All stages are visible, accessible to and
modifiable by, the user. The transformations between adjacent stages are evident.1

• Evolutionary programming — the system supports and encourages evolutionary ap-
proaches to design, implementation and maintenance. The basic system is designed to
be evolved from within to create a final end-user system. Fluid semantic transforma-
tions in the implementation encourage programmers to evolve personally, inventing and
applying more appropriate and expressive paradigms as they learn new techniques and
more about the solution spaces in which they can work. Dynamic, pervasively late-
bound, implementation supports rapid adaptation to changing external conventions and
constraints.

• User-centred construction — the system strives to serve the programmer (and not
the other way around). The programmer can take control of (and responsibility for) all
aspects of their programming language(s), system and environment.

In the remainder of this document, each section begins with a short summary of its contents
in a box, like this . Section 2 describes the current state of much of the art of conventional
programming systems. Section 3 describes a new approach to system building, with detailed
explanations of the representation of syntactic structures and the manipulations performed
on them in Sections 4 and 5, respectively. Section 6 shows how the system implements itself,
from top to bottom, and Section 7 contrasts the resulting unconventional systems from those
introduced earlier (in Section 2). Section 8 wraps it up, describing where it’s at and where
it’s going.

1It has been noted that: “The best way to predict the future is to invent it.” We take this further, as the
Open Future Principle: “The best way to implement the future is to avoid having to predict it.” Consequently,
nothing whatsoever in the system or its implementation is early-bound.

3

Application

System

Hardware

Libraries

Compiler

Syntax
SemanticsSource

Runtime

Language

Environment

malleable (under programmer control)

rigid (imposed from outside)

"black box" (hermetically sealed)

Pragmatics

UDP

Figure 1: Conventional programming languages. In green: the programmer can manipulate the
source code at will, and has some illusion (to a greater or lesser extent) of implicit control over
the executable application generated from it. The red boxes are imposed on the programmer
from outside and include all aspects of the language and all (or most) of the environment; usually
inaccessible from user-level code, they form two impenetrable black boxes.

2 Conventional programming languages

The programmer has total control over the source code (within the limits of syntactic
correctness), and some illusion of control (indirect, by implication only) over the final
application that is generated. All other aspects of the system are rigidly predetermined
and present (for all but the simplest programs and/or most simple-minded programmers)
impenetrable, often infuriating, artificial and arbitrary barriers to creativity, expression,
and the use of the most elegant and appropriate solutions.

Figure 1 illustrates a typical programming language.2

Source code is submitted to a compiler that creates a corresponding executable appli-
cation. When run, the application (presumably) performs some useful interaction with its
external environment by invoking functions in the system libraries and/or OS. The program-
mer is dealing with two impenetrable, hermetically-sealed black boxes: the language and the

2In addition to the compiler, the ‘system’ probably consists of nothing more than a text editor, some kind
of symbolic debugging technique, and maybe an offline cross-reference index generator.

4

environment.3

The language is a combination of syntax (restricting the legal content of the source
code), semantics (placing predefined meaning on that content), and pragmatics (the range
of externally-visible effects that are possible during execution). All three of these tend to be
rigid (designed by committee, for generality rather than fitness for any particular purpose),
inaccessible to the programmer (concealed in a hermetically-sealed ‘language’ box), and pre-
sented as faits accomplis to some unfortunate loser community.

With few exceptions, the environment (libraries, OS) is accessible only through the facilities
provided by the runtime support (probably designed by the same committee responsible for
the language). Accessing obscure or nonstandard facilities is either impossible, inefficient, or
profoundly disruptive to the creative programming process.

Languages that do provide access to nonstandard facilities often do so through a foreign
function interface (FFI) mechanism (matching impedances for calls out to the system) and/or
a user-defined primitive (UDP) mechanism (in which hand-written C code performs the same
kind of impedance matching and call-out). FFIs are expensive (normally involving explicit
synthesis of a dummy stack frame for each call-out) and their acceptability depends on the
ratios of internal processing and external workload performed per call-out. UDPs demand
specialised knowledge from the programmer (the ability to shift a level of abstraction — and
usually representation — within the implementation hierarchy) and are prohibitively disrup-
tive for exploratory and high-availability systems (edit, recompile, stop and re-launch the
world). Both approaches are limited to pragmatics (environmental effects); no specialisation
of semantics is possible. Modification of the language (syntax, semantics) demands knowledge
even more specialised than that needed to add primitives, and is in the domain of far fewer
programmers. (It also assumes availability of the language implementation for inspection,
modification and recompilation.)

3In the case of C[++] it’s really one and a half black boxes, since parts of the environment (the libraries)
are written in the same language as (or at least are ABI-compatible with) that which the programmer is using.

5

3 Combined Object-Lambda Architectures (COLAs)

A COLA is a pair of mutually-sustaining abstractions. One provides representation and
the other (behavioural) meaning. A minimum of each is imposed: the most desirable
end-user structures and abstractions are not the goal, but rather the simplest that can
produce a fully self-describing (and self-implementing) system.

Representation is provided by prototype-like objects exchanging messages, organised
into clone families (somewhere between lightweight classes and instance-specific be-
haviour); the semantics of messaging are defined recursively, by sending messages to
objects. Meaning is imposed on these representations by transforms that convert struc-
tures (similar to symbolic expressions in the lambda calculus) into executable forms; the
semantics of structures are defined recursively, by representing transforms as structures
indistinguishable from those that they transform. One such executable form provides
the implementation of methods installed in the objects of the representation; the overall
implementation is circular.

The implementation language and abstractions of the system are precisely the lan-
guage and abstractions that the system implements. Providing a dynamic execution
model, for which both dynamic and static code can be generated, eliminates the need
for a central interpreter- or VM-like agent, and ensures that everything (including the
deepest ‘kernel’ behaviour) can be modified, dynamically, on-the-fly.

A self-hosting COLA (Combined Object-Lambda Architecture) is a radically different ap-
proach to building programming languages, systems and applications.4 A COLA is named
after the two abstractions in its implementation; these will be described below. First however,
a brief description of the end-user view of a resulting system will be useful.

3.1 End-user abstractions

A COLA-based dynamic programming system is illustrated in Figure 2, consisting of a hier-
archy of pluggable stages:

• A front end acquires text (or some other unstructured form) from an input device
(console, file, network, ...).

• A parser converts this text into a structured form corresponding to an abstract syntax
tree (AST).

• The tree compiler ‘walks’ the ASTs, repeatedly applying transformations to the trees
until nothing remains.5 The ‘output’ from this stage is a sequence of abstract instructions

describing a complete function.6

4The ‘representation’ layer provides a language that is similar to one desirable end-user language, but is not
an ideal (pervasively late-bound) implementation of that language. It is code-named ‘Pepsi’. The ‘meaning’
layer provides everything required for a pervasively late-bound implementation of Pepsi. Since this is ‘the real
thing’, it is (of course) code-named ‘Coke’. (Readers under the age of 35, or those never significantly exposed
to an anglo-saxon culture, might have trouble figuring this one out.)

5Transforming a node within the AST can be a simple rewrite (like a macro), or an imperative action
(modifying compiler state and/or causing code to be generated) that results in another AST or nothing (when
any side effect has completely consumed the meaning of the AST).

6Abstract instructions share representation with every other object/structure in the system.

6

object memoryparser

GC

console interface

tree compiler

stack compiler

dynamic assembler

heap

text

object
structures

asbtract
machine insns

concrete
machine insns

code generator

keyboard

external
file, etc...

program-generated
structures

program-generated
concrete insns

program-generated
abstract insns

native code

parse trees,

malloc()

optimizer

meta-data

Figure 2: Logical architecture. The representation layer (objects and messaging) provides state
and behaviour for the object memory, storing structures for input (parse trees), intermediate
representations, and per-session persistent state (akin to meta data). The vertical compilation
chain, potentially ranging from an interactive ‘console’ through to the assembly of native code
instructions, is implemented as a series of transformations on semantic structures stored in the
object memory, reified as methods (or functions) associated directly (or indirectly) with ob-
jects and structures. The transformations themselves are described by structures in the object
memory. Each component in the chain (assembler, stack-oriented architecture-neutral code gen-
erator, structure/tree compiler, etc., are libraries that depend only on lower components within
the chain. Each is a useful entry point into the compilation chain and can be used indepen-
dently (inputs driven by some external program) or within a deeper chain (inputs driven by the
component ‘above’ it in the chain) or as a point to rejoin the chain when higher components
have been modified from their original form in-situ by the application.

• The virtual processor translates abstract instructions into native instructions, by a
further process of transformation. A few carefully chosen optimisations are applied
during this stage.7

• Finally, a dynamic assembler converts native instructions into binary for execution.
(In this dynamic, interactive, incremental example the generated code is executed im-
mediately for its side effects.)

The presentation of each stage is as simple as possible, typically a single object (the only
‘client-side’ state retained by a superjacent stage) whose methods define a functional inter-
face. Reconfiguration of the implementation chain is achieved by presenting any compatible
object to its ‘client’ stage. Alternate stages include interpreted execution strategies (of tree
structures or abstract instructions), generation of symbolic code (retention of tree structures

7The criterion of choice is that each optimisation be fast while contributing significantly to the efficiency
of the final code; i.e., it has a small price-performance ratio.

7

as an executable form, bytecodes, etc.), assembly to static (externally-stored executable) code
rather than dynamic code, and so on.

3.2 Modularity and reuse

Each stage provides a useful service in its own right and is organised to allow compilation to a
static, standalone, C- or C++-compatible library. This is trivial for the assembler and virtual
processor due to their allocation behaviour.

The intrinsic object system is largely hidden from the average user, and consists of a
handful of ‘fundamental’ objects.8 Memory management (allocation, deallocation, garbage
collection) is implemented (like most everything else) as methods installed in objects. The
_object prototype, root of all object hierarchies, implements a ‘null’ memory management
policy: allocation (and explicit deallocation) is from the C heap, and out-of-memory conditions
are fatal. It is the responsibility of hierarchies delegating to _object to override this behaviour
with something more useful (if required).

The dynamic assembler is a single object (with no aggregate internal state). Once allo-
cated, there is no need ever to free it (thread-local use notwithstanding). Automatic memory
management is irrelevant, and the trivial implementation inherited from _object is sufficient.

A virtual processor has no persistent internal state, does not export state to the client, and
deals with one function at a time. Allocation within the VPU is monotonic; once translation
of a function is complete, all internal state is released atomically.9 Trivial wrapper methods
provide monotonic object allocation within blocks obtained from the heap for all internal VPU
state, followed by explicit deallocation of the blocks en masse.

The tree compiler is the next independently useful stage, and is effectively the unique entry
point into more abstract stages of a COLA. (Parsers and front ends ultimately manipulate
tree compiler objects.) Some of its objects persist, and are subject to automatic memory
management.10

3.3 Construction and operation

Figure 3 shows the implementation of a COLA.
On the left is the simplest possible ‘pure’ object-oriented language: just the sufficient and

necessary elements to represent and interact with structure.11 The only implicit operation
is dynamic binding in the method cache (an optimisation, not an operation that defines
semantics). Correspondingly, dynamic binding (an operation that does define semantics) is
not an ‘intrinsic’ (or ‘primitive’) operation, and occurs explicitly whenever the method cache
misses; a (real) message is sent to a (real) object to perform (define the semantics of) method
lookup.

Messaging is therefore self-describing (the semantics of sending messages to objects are
described and implemented by sending messages to objects). Additional mechanisms (novel
binding — on multiple arguments, for example — including delegation/inheritance or other

8A common _object prototype (the parent of all other objects), along with the prototypes and families
required to give it trivial dynamic behaviour: _selector, _implementation, _binding, and _vtable.

9Similar to the monotonic allocation and bulk deallocation in ‘ObStack’s.
10Any number of interchangeable strategies are possible, according to the needs of the application in its

deployment context.
11Local structure is imposed to meet the criterion that the system can have any global structure.

8

C99
Smalltalk

Lisp
VVM

CokePepsi

"Pepsi"

OO syntax
OO semantics
OO types

debug

dynamic
incremental

C parse

parse

gen C
exe
dll
lib

vtbl RT GC
MM

gen asm

gen bin

exe

dll

mem

+ managed stack

foreign

struct
interp

exec

object

active
parse

etc...

active
compile

asm

opt

IR

VPU

ccg

lib

lib

"Coke"

C API

sym

static
portabie

prog env, debug env
persistence (src+IR+bin), db conn

bytecode import/interp, image

arbitrary sources, DSL, FSA
arbitrary targets, CPU, DSP, GPU, FPGA

etc...

"COLAs"

Figure 3: Architecture of a COLA. On the left, a minimal ‘pure’ object-oriented language
provides representation and behaviour of data structures, whose execution model (and corre-
sponding runtime support) is rigid only in the intrinsic vtable layout and a global method cache
(see text). Back ends can generate code in a variety of ways: portably and indirectly (generating
C as a high-level assembly language) with little or inefficient debugging support, or directly to
static (file-based) or dynamic (in-memory) native code, with full symbolic debugging. Addi-
tional services include foreign language importers (e.g., a C99 parser to extract platform data
types and interfaces), execution of semi-compiled code (interpretation of data structures without
translation to native code), and compilation for managed (rather than hardware-native) stack
models. On the right, the data structures represent (dynamic) behaviour for all phases of
program translation: parsing, parsed representation, compilation (including intermediate rep-
resentations), optimisation, and code generation. (‘Dynamic’ refers to late-bound behaviour
throughout the architecture that can be modified by users as desired.)

reuse mechanisms) are implemented by overriding the default methods that implement dy-
namic binding.

All manipulation of objects is accomplished by message passing. All runtime structures
(selectors, virtual tables, etc.) are real objects. The contents (or ‘shape’) of an object are
defined functionally, by the methods that access its state.

The above gives us a complete ‘theory’ (or ‘algebra’) of communication between objects
(messaging between objects from within method activations); it will be described in more detail
in Section 4. It does not give us a ‘theory’ (‘algebra’) of meaning (behaviour) to describe the
internal implementation of methods.

On the right of Figure 3, structures (built from the above objects) are formed into a
forest of ASTs. Each successive AST in the forest is evaluated, by compiling it and then

9

executing any resulting form. (The entire AST evaluation chain — from front-ends, through
IR, optimisations, back ends and code generators, to assemblers— is implemented within this
one object system.)

The meaning of each AST node is given by its association (a dynamic binding, determined
during the evaluation of the AST) with a compilation closure (implementing syntactic, seman-
tic or pragmatic meaning for the AST). A syntactic closure produces a rewritten AST (similar
to Lisp macros); semantic/pragmatic closures produce full or partial implementations of their
AST, generating IR and/or accessing back end/assembler features as required. Either can
have arbitrary side effects, and neither need produce a runtime effect (for structures whose
meaning is limited to compile-time effects). These closures are just methods executing in the
AST, or some associated object.

Pluggable back ends can be dynamic (producing native code in memory), symbolic (pro-
ducing bytecode), static (producing assembler source for a static executable), or any interme-
diate point along a continuum spanning the above.12 Generated static/dynamic native code
complies (unless otherwise overridden by a ‘pragmatic’ compilation closure) with the local
C ABI (ensuring seamless integration with OS, libraries, other languages, etc. — or anything
compatible with C calling conventions).

Front ends can be for any input language (textual or structured). One particular front
end describes the intrinsic object language of the system.

We now have self-describing theories of both objects (and messaging) and the semantics
of messaging and non-messaging ‘primitive’ operations within methods.13 Moreover, these
descriptions are self-implementing and (whenever necessary) dynamically self-modifying.

Many interesting and useful systems (based on existing languages or otherwise, dynamic
or static, OOP or not, etc.) can be constructed by ‘mutating’ the appropriate elements of the
above implementation chain into the desired target system.

Any combination of static and dynamic language features and deployment techniques
are possible. Virtual machines can be replaced by a set of ‘kernel’ object types (including
everything required to implement the compilation chain) that are compiled into a static (stored
on some persistent media for later execution) executable. The single paradigm for both static
and dynamic code allows any parts of this statically-generated kernel code to be modified
dynamically at runtime.14

12In general, dynamic code affects the programming environment and static code affects the (offline) appli-
cation being compiled. Many applications however might permanently simply coexist, in dynamic form, with
the COLA that supports them.

13The implementation (language) model is (precisely) the implemented (language) model.
14Statically-compiled COLA code should be thought of as ‘frozen’ dynamic code. When such code is run,

the system’s execution state is created incrementally as if the top-level declarations and statements in the
program had been read, compiled and executed interactively.

10

S -> I

lookup: -> <impl>

vtable
vtable

oop

?

Figure 4: Intrinsic dynamic behaviour. The runtime support implements dynamic binding
(message dispatch) in the simplest possible manner. Each object has an (indirectly or directly)
associated virtual table that maps message identifiers (selectors) to implementations. Object
behaviour is therefore late-bound (according to the contents of the virtual table) but the format
of the vtable is not, since the runtime must be capable of interpreting the contents of the virtual
table to find the method implementation associated with a particular selector.

4 Representation: objects and messaging

The intrinsic object model is the simplest possible that can support messaging. Binding
in a method cache, the only primitive operation provided, does not define the semantics
of messaging. The operation that does define messaging semantics, method lookup after
a cache miss, is not defined primitively; method lookup is performed by sending real
messages to real objects. All structures involved in the implementation of messaging
are full objects that respond to messages.

Simplicity breeds generality and flexibility, and this model extends itself dynamically
to provide more useful abstractions (such as delegation for behavioural reuse). The
in-memory format of objects is designed such that ‘wrapping’ an ordinary object im-
ported from a foreign language/paradigm (to add dynamic behaviour) preserves identity
between local and foreign references.

To preserve generality and flexibility, the intrinsic object model is as simple as possible (too
simple to be of much practical use). It is transformed into a usable object model (supporting
reuse, composition, etc.) by extending it in terms of itself (a self-similar implementation) as
outlined above.

4.1 Object format

Intrinsic dynamic (late-bound) behaviour is associated with an object through (for want of a
better word) a virtual table (‘vtable’).15 Sending a message to the object consists of finding
an implementation (at message send time) within the vtable of the receiver that corresponds
to the selector of the message being sent. Figure 4 illustrates this intrinsic ‘lookup’ operation.

The intrinsic model provides objects and messaging, but no way to add (for example)
behavioural composition or reuse (delegation, inheritance, whatever). Consider instead the
object just described as a ‘binding object’, primarily responsible for implementing a ‘lookup’

15The association of object with its virtual table is unspecified, and can be explicit or implicit. For sake of
illustration, assume for now that an object is known by an address in memory at which some corresponding
state is stored and that its vtable is identified by a pointer within that state.

11

S -> I

lookup: -> <impl>

vtable
vtable

vtable

oop

? ?
lookup: -> <impl>

binding object

delegate

Figure 5: Dynamic dynamic behaviour. More useful behaviour is obtained by replacing the
intrinsic vtable object with a user-defined binding object. Binding objects are not limited to the
intrinsic vtable format and can implement arbitrary lookup operations, following the desired
semantics of messaging. In the example shown here the binding object includes, in addition
to an unspecified means of associating selectors with implementations, a reference to a delegate

object that will attempt to field messages that are not understood by the receiver. The details
of when and how this delegate object are used are under the control of the lookup operation
defined by the binding object.

S -> I

lookup: -> <impl>

vtable
vtable

vtable

oop

? ?
lookup: -> <impl>

binding object

delegate

Figure 6: Everything is an object. The intrinsic vtable is its own vtable (the point of circularity
in the object system) and is manipulated internally, just like any object, by sending messages
to it. The implementations of the associated methods can be overridden as required by a
knowledgeable user.

method. Extending the model sideways (by adding a level of indirection) gives an object whose
dynamic behaviour (response to message send) is implemented by a user-accessible object
(the intrinsic object from above) whose implementation is dynamic (late-bound). Figure 5
illustrates this arrangement.

The binding object can be extended to implement any behavioural composition or reuse
mechanism (the figure illustrates single delegation), define any number of coexisting mech-
anisms, or create new mechanisms (a clone family of binding objects) to complement (or
replace) existing ones.

12

To complete the model, the initial vtable (providing behaviour for binding objects) is made
a real object by associating it with a vtable. As shown in Figure 6, the simplest solution is
for it to be its own vtable.

4.2 Methods and messaging

Methods are stored as closures. Their function address is the implementation of the method
body, and their closed-over state is unspecified.16 The code compiled for a message send is
therefore equivalent to

closure ← bind(object, selector, ...) ;
closure.function(object, closure, ...)

where ‘bind’ searches for a cached method implementation, invoking the lookup operation
only on cache miss:

bind(object, selector, ...) =
vtbl ← object[-1] ;
cache[vtbl, selector]

? cache[vtbl, selector]
: vtbl.lookup(object, selector, ...)

(where the ‘.’ operator represents a full message send).
Any set of objects associated with a single vtable share identical behaviour. Such a set

of objects is called a clone family ; modifying the behaviour associated with any object in the
family modifies the behaviour of all members of the family.

For ordinary objects (those with physical extension in memory) a pointer to the vtable
is stored one word before the contents of the object. Two additional vtables are associated
implicitly with the object at address zero (nil) and with any object having the lowest (right-
most, 0th) bit set (normally used to represent a ‘tagged’ integer).17 (These two vtables are
not predefined and are initialised explicitly in user-level code during startup. They can be
modified, or exchanged with another vtable, at any time.) The full ‘bind’ operation, including
implicit vtable associations, is therefore:

bind(object, selector, ...) =
vtbl ← object == 0 ? vtblnil

: object & 1 == 1 ? vtblfixint

: object[-1] ;

cache[vtbl, selector] ? cache[vtbl, selector]
: cache[vtbl, selector] ← vtbl.lookup(vtbl, selector, ...)

16This facilitates mixed-mode execution, where a method closure’s function might be a shared interpreter
loop and its closed-over state a sequence of bytecodes to be interpreted. Such bytecoded methods would be
indistinguishable, insofar as their calling conventions are concerned, from methods fully compiled to native
code.

17This is for compatibility and efficiency, respectively.

13

vtable
oop

?

vptr

objet C++
objet (struct) C

objet Smalltalk

etc...

classe

liaison dynamique

Figure 7: The in-memory representation of objects places the binding object reference one word
before the address of the object; an object’s address therefore refers to the first byte of user data
within the object. (The implementation of messaging is transparent to the user.) A consequence
of this design is that objects from other languages and paradigms can be encapsulated (as
full objects with dynamic behaviour) in a manner that preserves identity between the COLA
reference and that within the foreign language/paradigm.

4.3 Interoperability

As shown in Figure 7, the memory format of ordinary objects places a vtable pointer before the
address of the object. An ‘oop’ points to first byte of (user-defined) data in the object body.
This is done to facilitate transparent encapsulation of foreign objects, preserving identity
between foreign and native references to the object. (This is particularly useful for toll-free
bridging to other languages and to library/OS services, in conjunction with parser extensions
that process platform header files to extract type information and function signatures for
automated interface generation.)

14

eval(nil, context) = nil

eval(tree, context) =
closure ← transform(type(tree), context) ;
eval(closure(tree, context), context)

transform(atom, context) =
(closure ← get-property(context, atom, ’transform)) == nil

? 〈error〉
: closure

transform(tree, context) = eval(tree, context)

Figure 8: Basic transformation engine. A tree is evaluated by applying the ‘transform’ property
(a closure) of the tree’s type (an object or structure) to the tree itself. (If the type is a tree, it is
first evaluated recursively.) While the transform results in new structure, the resulting structure
is evaluated immediately. The leaves of the evaluation graph are either no-ops (evaluating ‘nil’)
or the execution of a transform; all useful side effects therefore occur within the transforms.

5 Behaviour: symbolic expressions and transformations

Objects are composed into syntactic structures representing meaning (behaviour). These
structures are translated into an executable form by successive applications of transforms
that give semantic meaning to the syntactic structures. These transforms are represented
as objects composed into semantic structures. Since a transform is just behaviour,
semantic structures are syntactic structures (whose behaviour is applied to syntactic
structures); there is no ‘meta’ level.

Syntactic structures are ‘typed’. The most convenient type object is a symbol (a
human-readable name) with a ‘transform’ property associated with the transform ap-
propriate for the structure. Every semantic action/rule in the system can therefore
be named, and these names arranged into hierarchical namespaces. Transformations
are applied in the context of a particular namespace. Operations on these namespaces
(assignment to symbol properties, shadowing in a local namespace, etc.) affects the
meaning given to syntactic structures during transformation. The same input structure
can mean very different things in different contexts, and users can redefine the semantics
of any structure globally or locally to create domain-, application-, or even mood-specific
abstractions, paradigms and languages.

The objects of Section 4 are formed into structures representing symbolic syntactic expressions,
whose meaning (semantics, behaviour, implementation) is described by symbolic semantic ex-

pressions (also represented as structures composed of the same objects). Syntactic expressions
(or structures) are transformed (‘evaluated’) according to semantic expressions (or structures)
by a simple tree compiler that in itself places no intrinsic semantic meaning on the structures
that it is compiling. This evaluation eventually yields (one, both or neither of) an executable
representation in memory (or in a file) and side-effects modifying the evaluation/compilation
context of the system itself.

15

eval(nil, context) = nil

eval(atom, context) = emit-value(context, atom)

eval(tree, context) =
closure ← transform(type(tree), context) ;
eval(closure(tree, context), context)

transform(atom, context) =
(closure ← get-property(context, atom, ’transform)) == nil

? apply
: closure

transform(tree, context) = eval(tree, context)

apply(tree, context) =
emit-apply(context,

eval(type(tree), context),
map(eval, children(tree), context))

emit-value(context, object) = 〈emit abstract insns〉 ; nil

emit-apply(context, func, args) = 〈emit abstract insns〉 ; nil

Figure 9: Extended transformation engine. Evaluating an atomic object yields a sequence of
abstract instructions (via ‘emit’) generating the implied value. Evaluating a tree involves re-
applying (at compile time) the semantic transform (implemented as a closure) associated with
the type of the tree to the tree itself, for as many iterations as this process continues to yield
a transform. Any remaining structure is re-evaluated. The ‘get-property’ operation finds the
transform associated with an object within the given context. (Humble apologies for the abuse of
‘map’ but hopefully you get the idea, and it’s clearer than the correct ‘map(rcurry(eval, context),
children(tree))’.)

5.1 Structural transformations

The tree compiler is a simple engine that drives the transformations on (and implied by) object
structures. The crux of the engine is shown in Figure 8.

A convenient convention is to place transform properties on symbols, giving each tree a
human-readable ‘semantic type’. These symbols can be arranged into hierarchical namespaces,
such that transforms can be shared (inherited from outer namespaces) or local (overriding
similarly-named transforms in outer namespaces).18

An AST is therefore a combination of a type symbol (or expression) and zero or more
children, where property lists attached to symbols give semantic meaning to (define the trans-
formations applied to) ASTs. Retrieving a property attached to a symbol according to its
name is isomorphic to binding a method to an object according to its selector. Each dis-
tinct symbol that can denote the type of a tree is created in a singleton clone family with its

18This arrangement is particularly useful in the presence of a parser that generates tree structures directly
from Lisp-like prefix expressions.

16

O x M -> I

(I = { O’ x M’ }*)

01001011
01100101
11001000expr -> expr

 s-insn
 IR
 asm

pepsi

coke

Figure 10: Two mutually-sustaining levels of circular implementation. A representational sub-
strate (shown at the top) provides objects (for structure) and messaging (for interaction with
the structure). The messaging model assumes only that some combination of object O and re-
ceived message M identifies a unique method implementation I that in turn causes zero or more
messages M ′ to be sent to object(s) O′. Syntactic structures (shown at the bottom) are formed
to express behaviour (meaning). These expressions are transformed progressively, according to
rules that are (naturally) themselves expressed as semantic structures, to produce executable
code. The abstractions traversed during these transformations correspond to the phases or
passes (analyses, intermediate representations, final assembly) of a traditional compiler.

transform installed as a method in the its family’s vtable. Applying a transform to a tree is
therefore equivalent to (and implemented as) sending the tree’s type a message with selector
‘transform’, passing the tree and its compilation context as arguments.

The engine shown in Figure 8 is cumbersome in that every literal value and identifier in the
AST must be placed in a tree whose type identifies it as an r-value to be emitted. Similarly,
each function application requires an explicit ‘apply’ node in the tree. It is convenient to
extend the engine slightly to handle these two cases implicitly, as shown in Figure 9.

17

6 Circular implementation

The representation and meaning levels are mutually-supporting. Representation pro-
vides the structures needed to describe meaning; meaning provides behaviour needed to
implement the methods within the representation. The resulting dynamic, pervasively
late-bound system achieves the goals of simplicity, openness, evolutionary adaptability,
and user-centred implementation.

End-user systems can be constructed by ‘vertical extension’: piling more layers into
the end-user abstraction, joining the implementation chain at some appropriate point.
Alternatively, ‘horizontal mutation’ uses the dynamic introspective capabilities of the
basic system to modify its global behaviour from within, until it resembles the desired
end-user system. Applying the second of these techniques locally (in a specific evaluation
context) provides flexible syntax, semantics and pragmatics best adapted to expressing
arbitrarily small parts of an application— as easily as as defining a function or macro
in a traditional language.

A self-sustaining COLA architecture consists of two ‘level’s. The first deals with messaging be-
tween objects. As explained earlier, these objects describe their own behaviour; the semantics
of message passing (and any pervasive object morphology necessary to support it) are defined
by patterns of messages exchanged between objects. (This level says nothing, however, about
the implementation of methods.) The essential purpose of this level is to represent symbolic
expressions (syntactic structures) as illustrated in the upper portion of Figure 10.19

The second ‘level’ deals with the meaning of (behaviour implied by) these syntactic struc-
tures . Structures are repeatedly transformed into more fundamental forms (expressions,
abstract instructions, intermediate forms, machine instructions), until an executable repre-
sentation is reached. This is illustrated in the lower portion of Figure 10.

Completing the circular implementation follows directly from using the lower ‘meaning’
level to describe the internal behaviour of the method implementations (and the binding
operation between object and message name) in the upper ‘representation’ level. This is
illustrated in Figure 11.

COLAs are therefore entirely self-describing (i.e., self-implementing); from the representa-
tion of objects and the meaning of messaging, through parsing (a/message/lambda forms as
well as any additional forms for convenience and connectivity, e.g., platform headers), to the
compilation of syntactic forms into executable representation. Supporting a new language is
achieved by finding a transformation connecting the input structures to those of the back end.
This is illustrated in Figure 12.

The traditional (and obvious) approach appeals to ‘upward vertical extension’ of the im-
plementation chain: adding one or more stages that explicitly transform the source form (text,
bytecodes, ASTs) into the normal semantic structures of the host COLA for evaluation. The
former will converge closely on the latter at some stage of the implementation chain, and this is
equivalent to using the COLA as a high-level ‘assembler’ — albeit with much nicer properties
than a target language such as C. Some core part of a basic COLA has no choice but to follow
this model, as illustrated in the upper half of Figure 12. However, given a self-describing,
dynamic, and pervasively late-bound host system implementation, a very different approach

19The objects provided by this level do not necessarily have any relationship with the objects of a particular
end-user programming language implemented in the COLA, but are necessarily those used internally to express
the syntactic constructs of the language, their syntactic, semantic and pragmatic interpretation, and ultimately
their implementation.

18

O x M -> I

(I = { O’ x M’ }*)

01001011
01100101
11001000expr -> expr

 s-insn
 IR
 asm

pepsi

coke

Figure 11: The behaviour of methods in the representational layer (including the messaging
operation), as well as the (trivial) extrinsic mechanism that drives the transformation of semantic
expressions (s-exprs) according to s-exprs, is implemented in s-exprs. This results in an entirely
self-describing implementation.

is possible (and desirable).
The novel (and more subtle) approach mutates the COLA from within, causing it to

assume the personality of the source language. The transformations applied by the COLA to
its input structures are modified dynamically, in-situ, until the implementation chain (from
top to bottom) corresponds to the natural structures and semantics of the input language.20

This approach is illustrated in the lower half of Figure 12.
The second of these approaches in particular is scalable, and can be applied globally or

locally (Section 5.1). Applying it locally provides scoped, domain-specific languages in which
to express arbitrarily small parts of an application (these might be better called mood-specific

languages). Implementing new syntax and semantics should be (and is) as simple as defining
a new function or macro in a traditional language.

6.1 Bootstrapping

Bringing up a COLA is a four-phase process, illustrated in Figure 13. The first two phases
yield a ‘fake’ (static only) implementation of the object model. Since this isn’t The Real Thing,
it’s code-named ‘Pepsi’. The second two phases bring up a completely dynamic system (code-
named ‘Coke’) first statically (implemented in Pepsi) and then dynamically (implemented in
Coke).

1. Bootstrapping the representation (object/messaging) layer. Since this assumes no pre-
vious implementation, it is performed in a foreign language. The current prototype’s

20Those parts of the original system not required in the mutated system disappear in a puff of garbage
collection.

19

01001011
01100101
11001000

.c

.h
...

pepsi

your
DSL/ASL/MSL

Figure 12: The principle of self-implementation is applied throughout the system, from inter-
action with the environment (parsing of platform and library header files) through the imple-
mentation of the representation and semantic expressions, to the final application. The ability
to transform the running system from within itself leads to language/system implementations
that mutate the initial system into the desired system (rather than being layered on top of it).
The ability to transform dynamically the system at any level, either globally or locally, leads
to solutions in which domain-, application-, or even mood-specific languages are constructed
on-demand and on-the-fly, according to the needs of the system/application designer at any
given moment.

‘Phase One’ consists of a complete Pepsi compiler written entirely in C++ (Pepsi.C++).
The target language is C, used as a ‘portable high-level assembly language’.

2. Phase Two is a set of kernel object types (Object.pepsi) and a complete Pepsi compiler
(Pepsi.pepsi) written in Pepsi, using the Phase One (C++) compiler. (Once this
compiler is producing byte-identical output to the Phase One compiler, the C++ version
can be jettisoned without remorse.)

3. Pepsi-in-Pepsi is used to implement the dynamic semantics (behaviour-describing) layer.
While this yields a working COLA capable of describing systems with dynamic seman-
tics, its own implementation is still static (written in Pepsi). Therefore...

4. The semantics-describing parts of the Coke implementation (pretty much everything
more interesting than the intrinsic behaviour of the structural representation layer) are
reimplemented in Coke. The result is a self-describing, self-implementing, extremely
late-bound (deeply dynamic) system cast in a form that can be easily mutated at any
level into an implementation for a different language/system.

The resulting COLA is well adapted to the description and implementation of dynamic
languages and systems in which end-user object models are either identical to, or orthogonal

20

Pepsi.C++ Pepsi.pepsi

Pepsi compilerC++ compiler

Coke.pepsi

Coke compiler/evaluator

Object.pepsi

Pepsi.cokeCoke.coke
(object & message)(disposable)

(function & behaviour)

meaning representation

representation meaning

bootstrap (static)

self-implementing (static) representation

self-implementing (static) meaning

self-implementing (dynamic) representation and meaning

static

dynamic

is input for (compiled by)

implements

Figure 13: Bootstrapping the circular implementation. A disposable compiler written in C++
implements ‘Pepsi’ objects and messaging, and is immediately used to compile a Pepsi compiler
written in Pepsi. Syntactic and semantic representations, along with mechanisms for their
dynamic transformation, are implemented in Pepsi. The resulting system can then be applied
to the implementation of Pepsi itself, yielding ‘Coke’ (The Real Thing). All aspects of the system
(from dynamic binding in the method cache and intrinsic message lookup through to the most
abstract transformations of the semantic representation) are now visible to, and dynamically
modifiable by, the user.

to (but not extensions of) the intrinsic ‘Pepsi’ object model. For maximum flexibility, includ-
ing the ability to specialise the intrinsic Pepsi object model to adapt it to arbitrary end-user
applications, it is beneficial at this point to reimplement the methods of the Pepsi object im-
plementation using Coke, freeing the Pepsi implementation entirely from any requirement that
it be limited to Pepsi syntax/semantics. At this point, every component in the architecture
and implementation is late-bound (can be modified, locally or globally, at runtime).

21

Application

System

Hardware

Libraries

Dynamic
Compiler

Syntax
SemanticsSource

Runtime

malleable (under programmer control)

delicate (but not impossible ;-)

Pragmatics

Figure 14: Unconventional programming languages. In green: a single, homogeneous, dynamic,
late-bound implementation gives the user has control over all phases of application develop-
ment, deployment and execution. Compatible dynamic services can be injected into the kernel,
although modifying the hardware remains tricky (but not impossible, if flexible hardware such
as FPGAs are available and have corresponding COLA back ends).

7 Unconventional programming languages

Within a COLA, a single representation and pervasive, dynamic, late-bound paradigm
gives users control over all aspects of implementation and execution. There are no
barriers to expression or creativity. On the other hand, not having the ‘stable’ (and
impenetrable) base of a more traditional system imposes additional responsibilities on
the user. A useful compromise is to create traditional language/system implementations
within a COLA, to give users some stability while preserving their freedom to modify
any and all aspects of the language/system, at any depth, at any time.

Figure 14 illustrates a COLA-based programming language, in which the user has control
over all phases of implementation. A single representation and paradigm controls program
transformation (source to executable) and the runtime system that supports it, as well as
their implementation and that of end-user code running within the system. Nothing is static,
no aspect of the system is early-bound or rigidly defined/implemented, and nothing is (nec-
essarily) hidden from (inaccessible to) the user. The system implementation and runtime are
first-class components of the running application — or to look at it another way, the entire
application is just an extension of its own implementation mechanism.

Compatibility with the C ABI ensures seamless integration with, and control of, the system
environment. Dynamic compilation services, at any level of abstraction, can be encapsulated

22

and loaded into the kernel to provide runtime extension and modification of the operating
system itself. Novel architectures (FPGA-based, for example), combined with an appropriate
COLA ‘code’ generator, could have their hardware (or the division of labour between hardware-
and software-implemented algorithms) reconfigured dynamically at runtime, by re-interpreting
(unmodified) semantic structures within a different (or differently-parameterised) context.

The user’s programming environment is homogeneous: there are no artificial distinctions
between language implementation, runtime and application and no artificial barriers to ex-
pression or creativity.

A potential complication of this unconventional approach is confusion and disorientation
on the part of conventional users (more accustomed to rigid, ‘black box’ systems). There are
no a priori fixed points of reference; everything is (extreme) homogeneity, generality, flexibility
and freedom.

Programming with COLAs must therefore commence by artificially creating points of
reference — adding syntactic and semantic sugar (appropriate to the application domain) over
the homogeneous base to form a stable base on which to build end-user systems.21 There is no
reason to preclude existing, more traditional languages and systems from such ‘stable bases’,
however with the inestimable advantage that expedient (or maybe opportunistic) modification
of the normally ‘concrete’ aspects of the language/system, at any depth in the implementation
hierarchy, remains entirely possible.

21Such a base already exists in the basic system, in the languages and abstractions of the representation
and meaning levels. Conversely, the entire system is organised to encourage the user to begin by tearing them
down and replacing them with something more appropriate to their application domain.

23

8 Conclusion

Conventional languages and systems are incompatible with ‘open future’ principles. Built-in,
early-bound assumptions are pervasive and form an impenetrable barrier to evolution (innova-
tion, expression, integration). VM- or interpreter-based systems are little better; whereas the
compiler is often available to the user, the interpreter rigidly defines both bytecodes (or some
equivalent executable representation) thus preventing semantic exploration, and primitives
thereby limiting pragmatic extensions.

An alternative is to create a virtual execution environment implemented entirely in (one of)
the dynamic, late-bound language(s) that it implements. The kernel implements the simplest
possible dynamic language, defining the minimum required of objects to support messaging.
This single abstraction is pervasive, from application to metal, and being late-bound it puts
the implementation chain entirely in the user domain. Respecting (unless overridden) the
local C ABI puts the standard libraries and system services under direct control of the user.

Back ends that support the generation of static (offline compilation) and dynamic (incre-
mental compilation) code encourage VM- or interpreter-based systems to be built without a
VM or interpreter. Static compilation of a number of ‘kernel’ classes or types replaces the
traditional monolithic VM or interpreter. A single execution model means static code exhibits
dynamic behaviour, giving VM-like benefits (incremental programming, reactivity) equally for
applications (user-level code) and runtime (the pre-compiled ‘kernel’ objects), while eliminat-
ing barriers to exploration, integration, and evolution.

Previously disenfranchised users are thus empowered to engage in wonderfully unreasonable
behaviour, due to the potential for intercession at any level of their system’s implementation.
Expression is not limited by (and can encompass to any degree required) environmental, se-
mantic, or pragmatic details, and no bottlenecks remain between the user and full exploitation
of platform resources and services.

8.1 Omissions

Not (yet) covered in this document:

• a compelling example or two up-front, e.g: transforms implementing message send (com-
bination of compile-time and run-time logic) with inline caches (compile-time allocation)
in a procedural language, from message send through to generated code;

• selectors as compile-time and run-time objects (e.g., for implementing dispatch on mul-
tiple arguments);

• the type system, that eliminates the need for ‘primitive’ methods in the object system
and provides additional scope for clever dispatch techniques (e.g., compile-time static
overloading);

• (appendix with) details of the base semantic transforms (definitions, operators, condi-
tionals, sequences, lambda, temporaries, scopes), the abstract machine (VPU), and the
assemblers.

8.2 Status

Pepsi prototyped (without Coke layer on top, for now) with limited backends (C-based assem-
bler of static code, but with correct dynamic behaviour), little debugging support, pending

24

platform integration (C99 parser for headers written but not integrated), no structure inter-
preter or bytecode support, and limited memory management. Coke prototyped (with C++
object system, not Pepsi, below) with dynamic only (no static code generation) for several
stock CPU architectures. To the above extent what is written here is fact; anything else is
desire and speculation, and the most effective way to find out if it’s possible (or even desirable)
is just to try to do it.

Lots of work remaining: integration of all of the above (with reimplementation as required),
plenty of peripheral support (user interface, persistence), and some decent end-user theory
of sharing and composition (traits, for example). Not to mention building something real
(Croquet, for example, along with the various scripting languages we’d like to see supported
in it) on top of it all.

8.3 Perspectives

A mature end-user theory of composition is required; traits would seem to be a very good
candidate. Several end-user languages and systems should be implemented to demonstrate
the viability, efficiency, and advantages of COLAs. Generic facilities for runtime feedback and
dynamic optimisation are needed. Dynamic scanning and parsing algorithms (in the same
spirit as the tree compiler transformations) are highly desirable. Alternative IRs, especially
those better suited at extracting parallel behaviour for multiprocessors and distributed com-
putations, would be interesting.

Community involvement would be an excellent forcing function for much of the above. It
would also give some indication as to the problems of programmer education and user accep-
tance posed by the genericity, malleability and openness of COLA-based platforms, because...

“Liberty means responsibility. That is why most men dread it.”

— George Bernard Shaw, Maxims for Revolutionists

25

